FAIR USE NOTICE


FOR EXTRAORDINARY HIGHLY SENSITIVE PERSONS

A BEAR MARKET ECONOMICS BLOG

OCCUPY YOUR SENSES AND SENSIBILITIES

This site may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in an effort to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. we believe this constitutes a ‘fair use’ of any such copyrighted material as provided for in section 107 of the US Copyright Law.

In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. For more information go to:http://www.law.cornell.edu/uscode/17/107.shtml

If you wish to use copyrighted material from this site for purposes of your own that go beyond ‘fair use’, you must obtain permission from the copyright owner.

FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.

Read more at: http://www.etupdates.com/fair-use-notice/#.UpzWQRL3l5M | ET. Updates
FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.

Read more at: http://www.etupdates.com/fair-use-notice/#.UpzWQRL3l5M | ET. Updates

All Blogs licensed under Creative Commons Attribution 3.0

Wednesday, June 1, 2016

Is the Human Species in Evolution's Fast Lane?


Daily Galaxy's Profile Photo






Is the Human Species in Evolution's Fast Lane? -A Galaxy Classic

Shutterstock_52302401"We are more different genetically from people living 5,000 years ago than they were different from Neanderthals."
John Hawks -University of Wisconsin anthropologist
In a fascinating discovery that counters a common theory that human evolution has slowed to a crawl or even stopped in modern humans, a new study examining data from an international genomics project describes the past 40,000 years as a time of supercharged evolutionary change, driven by exponential population growth and cultural shifts.

The findings may lead to a very broad rethinking of human evolution, especially in the view that modern culture has essentially relaxed the need for physical genetic changes in humans to improve survival.
A team led by University of Wisconsin-Madison anthropologist John Hawks estimates that positive selection just in the past 5,000 years alone -dating back to the Stone Age - has occurred at a rate roughly 100 times higher than any other period of human evolution. Many of the new genetic adjustments are occurring around changes in the human diet brought on by the advent of agriculture, and resistance to epidemic diseases that became major killers after the growth of human civilizations.
"In evolutionary terms, cultures that grow slowly are at a disadvantage, but the massive growth of human populations has led to far more genetic mutations," says Hawks. "And every mutation that is advantageous to people has a chance of being selected and driven toward fixation. What we are catching is an exceptional time."
While the correlation between population size and natural selection is nothing new - it was a core premise of Charles Darwin, Hawks says - the ability to bring quantifiable evidence to the table is a new and exciting outgrowth of the Human Genome Project.
In the hunt for recent genetic variation in the genome map the project has cataloged the individual differences in DNA called single nucleotide polymorphisms (SNPs). The project has mapped roughly 4 million of the estimated 10 million SNPs in the human genome. Hawks' research focuses on a phenomenon called linkage disequilibrium (LD). These are places on the genome where genetic variations are occurring more often than can be accounted for by chance, usually because these changes are affording some kind of selection advantage.
The researchers identify recent genetic change by finding long blocks of DNA base pairs that are connected. Because human DNA is constantly being reshuffled through recombination, a long, uninterrupted segment of LD is usually evidence of positive selection. Linkage disequilibrium decays quickly as recombination occurs across many generations, so finding these uninterrupted segments is strong evidence of recent adaptation, Hawks says.
Employing this test, the researchers found evidence of recent selection on approximately 1,800 genes, or 7 percent of all human genes.
This finding runs counter to conventional wisdom in many ways, Hawks says. For example, there's a strong record of skeletal changes that clearly show people became physically smaller, and their brains and teeth are also smaller. This is generally seen as a sign of relaxed selection - that size and strength are no longer key to survival.
But other pathways for evolution have opened, Hawks says, and genetic changes are now being driven by major changes in human culture. One good example is lactase, the gene that helps people digest milk. This gene normally declines and stops activity about the time one becomes a teenager, Hawks says. But northern Europeans developed a variation of the gene that allowed them to drink milk their whole lives - a relatively new adaptation that is directly tied to the advance of domestic farming and use of milk as an agricultural product.
The biggest new pathway for selection relates to disease resistance, Hawks says. As people starting living in much larger groups and settling in one place roughly 10,000 years ago, epidemic diseases such as malaria, smallpox and cholera began to dramatically shift mortality patterns in people. Malaria is one of the clearest examples, Hawks says, given that there are now more than two dozen identified genetic adaptations that relate to malaria resistance, including an entirely new blood type known as the Duffy blood type.
Another recently discovered gene, CCR5, originated about 4,000 years ago and now exists in about 10 percent of the European population. It was discovered recently because it makes people resistant to HIV/AIDS. But its original value might have come from obstructing the pathway for smallpox.
"There are many things under selection that are making it harder for pathogens to kill us," Hawks says.
Population growth is making all of this change occur much faster, Hawks says, giving a tribute to Charles Darwin. When Darwin wrote in "Origin of the Species" about challenges in animal breeding, he always emphasized that herd size "is of the highest importance for success" because large populations have more genetic variation, Hawks says.
The parallel to humans is obvious: The human population has grown from a few million people 10,000 years ago to about 200 million people at A.D. 0, to 600 million people in the year 1700, to more than 6.5 billion today. Prior to these times, the population was so small for so long that positive selection occurred at a glacial pace, Hawks says.
"What's really amazing about humans," Hawks continued, "that is not true with most other species, is that for a long time we were just a little ape species in one corner of Africa, and weren't genetically sampling anything like the potential we have now."
The recent changes are especially striking.
"Five thousand years is such a small sliver of time - it's 100 to 200 generations ago. That's how long it's been since some of these genes originated, and today they are in 30 or 40 percent of people because they've had such an advantage. It's like 'invasion of the body snatchers.'"
The Wisconsin study is published in the Dec. 10 issue of the Proceedings of the National Academy of Sciences.
Posted by Casey Kazan with Josh Hill. Adapted from a University of Wisconsin release.
Related Galaxy posts:


April 21, 2008

“Hyper-Speed” Evolution Possible? Recent Research Says "Yes" -A Galaxy Classic



Asian_moon_race_2Think it takes thousands or even millions of years for animals to evolve significantly new traits? 
Think again. New research lends just a touch of credibility to the idea behind the popular sci-fi TV series Heroes, which portrays certain humans as having quickly evolved new astounding traits in response to increasingly tumultuous environmental pressures.


In 1971 biologists moved 5 adult pairs of Italian wall lizards from their island home of Pod Kopiste, in the South Adriatic Sea, and introduced them to the neighboring island of Pod Mrcaru. Now, an international team of researchers has discovered that introducing these small, green-backed lizards, Podarcis sicula, to a new environment caused them to undergo shockingly fast and large-scale evolutionary changes.

Researchers returned to the islands twice a year for three years, in the spring and summer of 2004, 2005 and 2006. Captured lizards were transported to a field laboratory and measured for snout-vent length, head dimensions and body mass. Tail clips taken for DNA analysis confirmed that the Pod Mrcaru lizards were genetically identical to the source population on Pod Kopiste. In other words, there is no doubt that these lizards are the offspring of the 1971 transplant. The results of the study were recently published in Proceedings of the National Academy of Sciences.

The lizards evolved entirely new digestive system features to cope with dietary changes, evolved bigger heads and also ceased to defend territories—an instinct once very integral to the species behavior back on their original home territory. 

“Striking differences in head size and shape, increased bite strength and the development of new structures in the lizard’s digestive tracts were noted after only 36 years, which is an extremely short time scale,” remarks Duncan Irschick, a professor of biology at the University of Massachusetts Amherst.

Observed changes in head morphology were caused by adaptation to a different food source explains Irschick. The lizards on the barren island of Pod Kopiste were well-suited to catching mobile prey, feasting mainly on insects. Life on Pod Mrcaru, where they had never lived before, offered them an abundant supply of plant foods, including the leaves and stems from native shrubs. Analysis of the stomach contents of lizards on Pod Mrcaru showed that their diet included up to two-thirds plants, depending on the season, a large increase over the population of Pod Kopiste.

“As a result, individuals on Pod Mrcaru have heads that are longer, wider and taller than those on Pod Kopiste, which translates into a big increase in bite force,” says Irschick. “Because plants are tough and fibrous, high bite forces allow the lizards to crop smaller pieces from plants, which can help them break down the indigestible cell walls.”

Examination of the lizard’s digestive tracts revealed something even more surprising. Eating more plants caused the development of new structures called cecal valves, designed to slow the passage of food by creating fermentation chambers in the gut, where microbes can break down the difficult to digest portion of plants. Cecal valves, which were found in hatchlings, juveniles and adults on Pod Mrcaru, have never been reported for this species, including the source population on Pod Kopiste.

“These structures actually occur in less than 1 percent of all known species of scaled reptiles,” says Irschick. “Our data shows that evolution of novel structures can occur on extremely short time scales. Cecal valve evolution probably went hand-in-hand with a novel association between the lizards on Pod Mrcaru and microorganisms called nematodes that break down cellulose, which were found in their hindguts.”

Change in diet also affected the population density and social structure of the Pod Mrcaru population. Because plants provide a larger and more predictable food supply, there were more lizards in a given area on Pod Mrcaru. Food was obtained through browsing rather than the active pursuit of prey, and the lizards had given up defending territories.

“What is unique about this finding is that rapid evolution can affect not only the structure and function of a species, but also influence behavioral ecology and natural history,” says Irschick.

So next time you see Hayden Panettiere on TV running around in her cheer skirt regenerating her limbs, just think how the premise may be just slightly less crazy that you previously suspected.

Posted by Rebecca Sato.

If you liked this article, please give it a quick review on DiggRedditor StumbleUpon.Thanks!
Related Galaxy posts:

Is the Human Species in Evolution's Fast Lane? -A Galaxy Classic

1 comment:

  1. We have left many obvious clues along the way for those who are awakening to follow.

    ReplyDelete